Author:
Aseev V. V.,Kergilova T. A.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,General Mathematics,Statistics and Probability
Reference16 articles.
1. H. Haruki and T. M. Rassias, “A new invariant characteristic property of Möbius transformations from standpoint of conformal mapping,” J. Math. Anal. Appl. 181, 320–327 (1994).
2. H. Haruki and T. M. Rassias, “A new characteristic of Möbius transformations by use of Apollonius points of triangles,” J. Math. Anal. Appl. 197, 14–22 (1996).
3. O. Kobayashi, “Apollonius points and anharmonic ratios,” Tokyo Math. J. 30, No. 1, 117– 119 (2007).
4. V. Aseev and T. Kergilova, “On transformations that preserve fixed anharmonic ratio,” Tokyo J. Math. 33, No. 2, 365–371 (2010).
5. T. A. Kergilova, “Injective Borel-measurable mappings preserving a prescribed cross-ratio up to complex conjugation are necessarily Möbius transformations” [in Russian], Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform. 10, No. 4, 68–81 (2010);