1. V. L. Makarov, I. P. Gavrilyuk, and V. M. Luzhnykh, “Exact and truncated difference schemes for one class of Sturm–Liouville problems with degeneration,” Differents. Uravn., 16, No. 7, 1265–1275 (1980).
2. V. L. Makarov, M. M. Gural’, and M. V. Kutniv, “Weight estimates of the accuracy of difference schemes for the Sturm–Liouville problem,” Mat. Metody Fiz.-Mekh. Polya, 58, No. 1, 7–22 (2015); English translation: J. Math. Sci., 222, No. 1, 1–25 (2017); https://doi.org/10.1007/s10958-017-3278-7.
3. V. G. Prikazchikov, “High-accuracy homogeneous difference schemes for the Sturm–Liouville problem,” Zh. Vychisl. Mat. Mat. Fiz., 9, No. 2, 315–336 (1969); English translation: USSR Comput. Math. Math. Phys., 9, No. 2, 76–106 (1969); https://doi.org/10.1016/0041-5553(69)90095-0.
4. A. A. Samarskii, Introduction to the Theory of Difference Schemes [in Russian], Nauka, Moscow (1971).
5. A. A. Samarskii, R. D. Lazarov, and V. L. Makarov, Difference Schemes for Differential Equations with Generalized Solutions [in Russian], Vysshaya Shkola, Moscow (1987).