1. I. A. Aleksandrov, Theory of Functions of a Complex Variable [in Russian], Tomsk (2002).
2. I. A. Aleksandrov, Parametric Continuations in the Theory of Univalent Functions, Nauka, Moscow (1976).
3. B. G. Baybarin, “On a numerical method of defining the parameters of the Schwarz derivative for a function, which conformally maps the half-plane onto a circular domain,” Tr. Tomsk. Univ. Mat. Mekh., 189, 123–136 (1966).
4. E. N. Bereslavskii, “Modeling the motion of groundwater from pits fenced with Zhukovsky sheet piles,” Vestn. Sankt-Peterburg. Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upravl., 13, No. 2, 124-137 (2017).
5. E. N. Bereslavskii, “On integrating in the closed form of one class of Fuchsian equations and its applications,” Izv. Vyssh. Ucheb. Zaved. Mat., No. 9, 3–5 (1989).