Publisher
Springer Science and Business Media LLC
Reference13 articles.
1. A. E. Guterman, M. A. Khrystik, and O. V. Markova, “On the lengths of group algebras of finite Abelian groups in the modular case,”J. Algebra Appl., 21, No. 6, 2250117—2250130 (2022).
2. A. E. Guterman and O. V. Markova, "The length of group algebras of small-order groups," Zap. Nauchn. Semin. POMI, 472, 76-87 (2018)
3. English transl., J. Math. Sci., 240, No. 6, 754-761 (2019).
4. A. E. Guterman and O. V. Markova, “The length of the group algebra of the group Q8,” in: New Trends in Algebra and Combinatorics. Proceedings of the 3rd International Congress in Algebra and Combinatorics (Ed. by K. P. Shum, E. Zelmanov, P. Kolesnikov, A. Wong), World Sci., Singapore (2019), pp. 106–134.
5. A. E. Guterman, O. V. Markova, and M. A. Khrystik, “On the lengths of group algebras of finite Abelian groups in the semi-simple case,” J. Algebra Appl., 21, No. 7, 2250140–2250153 (2022).