Abstract
AbstractWe study the system $$\begin{aligned} \{\overline{L(t)}e^{i nt}\}_{n=-\infty }^{-1} \cup \{ M(t) e^{i nt}\}_{n=0}^{\infty }, \end{aligned}$$
{
L
(
t
)
¯
e
int
}
n
=
-
∞
-
1
∪
{
M
(
t
)
e
int
}
n
=
0
∞
,
where L and M are boundary values of some outer functions defined in the unit disc. Necessary and sufficient conditions on functions L and M are found so that the system is a Schauder basis in $$L^{p}(\mathbb {T}),$$
L
p
(
T
)
,
$$1< p < \infty$$
1
<
p
<
∞
.
Funder
Universidad Autónoma de Madrid
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,General Mathematics,Statistics and Probability
Reference20 articles.
1. S. Banach, Théorie des opérations linéaires, Chelsea Publ. Co. (New York, 1955).
2. N. K. Bary, A Treatise on Trigonometric Series, GIFML, Moscow (1961). English trans.:Pregamon Press, New York (1964).
3. A. Beurling, On two problems concerning linear transformations in Hilbert space, Acta Math. 81 (1949), 239–255.
4. J.S. Byrnes, D.J. Newman, Completeness preserving multipliers, Proc. Amer. Math. Soc., 21(1969), 445–450.
5. J.S. Byrnes, Complete multipliers, Trans. Amer. Math. Soc., 172(1972), 399–403.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献