A new neuro-fuzzy-based classification approach for hyperspectral remote sensing images
Author:
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences
Link
http://link.springer.com/content/pdf/10.1007/s12040-018-1054-9.pdf
Reference39 articles.
1. Aghaee R and Mokhtarzade M 2015 Classification of hyperspectral images using subspace projection feature space; IEEE Geosci. Remote Lett. 12(9) 1803–1807.
2. Alajlan N, Bazi Y, Melgani F and Yager R R 2012 Fusion of supervised and unsupervised learning for improved classification of hyperspectral images; Inform. Sci. 217 39–55.
3. Arslan O 2009 A novel confidence estimation method for neural networks in multispectral image classification; Int. J. Dig. Earth 2(4) 343–358.
4. Benítez J M, Castro J L and Requena I 1997 Are artificial neural networks black boxes?; IEEE Trans. Neural Netw. 8(5) 1156–1164.
5. Bilgin G, Erturk S and Yildirim T 2008 Unsupervised classification of hyperspectral-image data using fuzzy approaches that spatially exploit membership relations; IEEE Geosci. Remote Lett. 5(4) 673–677.
Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. An Efficient Ensemble Approach for Hyperspectral Image Classification;2023 5th International Conference on Smart Systems and Inventive Technology (ICSSIT);2023-01-23
2. Fusing Ultra-Hyperspectral and High Spatial Resolution Information for Land Cover Classification Based on AISAIBIS Sensor and Phase Camera;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2023
3. Data Augmentation in Prototypical Networks for Forest Tree Species Classification Using Airborne Hyperspectral Images;IEEE Transactions on Geoscience and Remote Sensing;2022
4. uFTIR: An R package to process hyperspectral images of environmental samples captured with μFTIR microscopes;SoftwareX;2021-12
5. Multispectral Remote Sensing Image Classification Using Modern Machine Intelligence Approach;2021 7th International Conference on Signal Processing and Communication (ICSC);2021-11-25
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3