Abstract
AbstractEmergent properties of eusocial insect colonies (e.g., nest architecture and defense) highlight benefits of group living. Such emergent properties, however, may only function as a benefit if the group is large enough. We tested the effect of group size on colony-level fever in honey bees. When a colony is infected with Ascosphaera apis, a heat-sensitive brood pathogen, adult bees raise the temperature to kill the pathogen and keep brood disease free. In relatively large colonies, we show a rhythm to honey bee fever: colonies inoculated with A. apis generated a fever in the afternoon and at night but not in the morning. In comparison, relatively small colonies did not generate a fever following inoculation, although they invested more in thermoregulation on a “per bee” basis than control colonies. Thus, in small colonies, honey bee fever could be regarded as a cost of group living: individuals futilely exerted valuable energy towards fighting a pathogen.
Funder
National Science Foundation
Garden Club of America
Publisher
Springer Science and Business Media LLC
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献