Which Capital Flow Surge Methods Are Better at Predicting Reversals and Sudden Stops?: Balancing Type 1 and Type 2 Errors

Author:

Choi Yongseok,Efremidze LevanORCID,Sula Ozan,Willett Thomas D.

Abstract

AbstractCapital flow surges have become a major source of concern as they have been often followed by disruptive reversals and sudden stops. We introduce F-score methodology which evaluates how well particular capital flow surge method can predict reversals and sudden stops. F-scores consider both type 1 and type 2 errors and provide policy makers a framework to weigh economic costs of false negative and false positive signals. We construct and compare a large number of commonly used surge identification approaches, including several machine-learning methods, to investigate which types of formulations best help explain which surges are more likely to be reversed. While considerable literature has investigated the determinants of capital flow reversals and sudden stops with surges being included as one of the independent variables, so far little research attention has been focused directly on attempting to determine the likelihood that particular surge will result in reversals or sudden stops. This is the most important question for policies toward capital inflows since the optimal responses to capital flow surges would be quite different depending on whether the flows are likely to be reversed or not. Unfortunately, theory does not offer a clear guide to identifying surges other than that they are unusually large inflows. We emphasize that appropriate evaluation should involve not only precision in predicting reversals but also accuracy in not giving false alarms by predicting reversals that do not occur. In other words, attention needs to be paid to both type 1 and type 2 errors.

Funder

Pepperdine University Libraries

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3