Indirect Inference and Small Sample Bias — Some Recent Results

Author:

Meenagh David,Minford Patrick,Xu YongdengORCID

Abstract

AbstractMacroeconomic researchers use a variety of estimators to parameterise their models empirically. One such is FIML; another is indirect inference (II). One form of indirect inference is ‘informal’ whereby data features are ‘targeted’ by the model — i.e. parameters are chosen so that model-simulated features replicate the data features closely. Monte Carlo experiments show that in the small samples prevalent in macro data, both FIML informal II produce high bias, while formal II, in which the joint probability of the data- generated auxiliary model is maximised under the model simulated distribution, produces low bias. They also show that FII gets this low bias from its high power in rejecting misspecified models, which comes in turn from the fact that this distribution is restricted by the model-specified parameters, so sharply distinguishing it from rival misspecified models.

Publisher

Springer Science and Business Media LLC

Subject

Economics and Econometrics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3