Post-Dropping Behavior of Potato Aphids (Macrosiphum euphorbiae)

Author:

Humphreys Rosalind K.ORCID,Ruxton Graeme D.ORCID,Karley Alison J.ORCID

Abstract

AbstractDropping behavior is an effective antipredator defense utilized by many insects including aphids, which drop from plants to lower plant parts or underlying substrates to avoid attack from predatory invertebrates. While research commonly focusses on triggers of dropping, less attention is given to what happens to prey individuals following escape drops. In this study, the duration of tonic immobility, recovery rates, and cases of “instant recovery” (re-clinging to lower plant parts) exhibited by potato aphids (Macrosiphum euphorbiae) that dropped from potted seedlings in response to introduced ladybird (Adalia bipunctata) adults, lacewing (Chrysoperla carnea) larvae, and a standardized tactile stimulus were investigated in relation to a range of environmental factors. Air temperature had a negative correlation with the duration of post-dropping tonic immobility; as temperature increased, time spent motionless decreased. Aphids also showed a pattern of increased recovery rate at higher temperatures. Aphids may be selected to move off the substrate quicker to avoid risks of overheating/desiccation at higher temperatures; and/or higher body temperature facilitates locomotion. Stimulus type also influenced recovery rate back to the original seedling, with aphids generally recovering after the standardized stimulus quicker than after dropping triggered by a real predator. Considering cases of instant recovery onto lower-reaches of the host seedling, seedling height influenced the likelihood of re-clinging, with aphids that managed to instantly recover dropping from, on average, taller seedlings than aphids that dropped to the substrate. Plant architecture could mitigate the costs of dropping for aphids, but further studies quantifying understory foliage cover are needed.

Funder

Perry Foundation

University of St Andrews

Rural and Environment Science and Analytical Services Division

Publisher

Springer Science and Business Media LLC

Subject

Insect Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3