Ambient Illumination Influence on Photuris Firefly Larval Surface Movements is not Mediated by the Stemmata

Author:

Murphy FrederickORCID,Moiseff Andrew

Abstract

AbstractMovements of fireflies visible on the surface of soil were measured under controlled laboratory conditions consisting of high and low ambient illumination. High illumination approximating the intensity of light prior to sunset constituted our light condition. Low illumination was consistent with ambient light levels after civil sunset, which we referred to as our dark condition. Surface movements were significantly more frequent during dark conditions compared to light conditions. Stemmata are the larval form of the insect eye and were the only identified visual organs present in Photuris larvae. We investigated whether stemmata provided larvae with the sensory information facilitating the light dependency of surface movements. We disrupted transmission of visual information from the larval eyes to the brain by severing the optic nerves. The amount of surface movement was compared between larvae with intact and severed optic nerves, under light and dark conditions. Light dependency of surface movements was preserved in larvae with cut optic nerves. The presence of the light dependency after cutting the optic nerves indicated that an alternative, extrastemmatal sensory pathway must be providing light intensity information to the animal. Light dependency was abolished upon removal of the head. Thus, these results suggested that the extraocular system providing light intensity information for regulating the frequency of surface movement was located in the head. The precise location of the suggested extraocular receptor and the nature of the associated sensory system remains unknown.

Publisher

Springer Science and Business Media LLC

Subject

Insect Science,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3