Bootstrap based goodness-of-fit tests for binary multivariate regression models

Author:

van Heel MareikeORCID,Dikta Gerhard,Braekers Roel

Abstract

AbstractWe consider a binary multivariate regression model where the conditional expectation of a binary variable given a higher-dimensional input variable belongs to a parametric family. Based on this, we introduce a model-based bootstrap (MBB) for higher-dimensional input variables. This test can be used to check whether a sequence of independent and identically distributed observations belongs to such a parametric family. The approach is based on the empirical residual process introduced by Stute (Ann Statist 25:613–641, 1997). In contrast to Stute and Zhu’s approach (2002) Stute & Zhu (Scandinavian J Statist 29:535–545, 2002), a transformation is not required. Thus, any problems associated with non-parametric regression estimation are avoided. As a result, the MBB method is much easier for users to implement. To illustrate the power of the MBB based tests, a small simulation study is performed. Compared to the approach of Stute & Zhu (Scandinavian J Statist 29:535–545, 2002), the simulations indicate a slightly improved power of the MBB based method. Finally, both methods are applied to a real data set.

Funder

Fachhochschule Aachen

Publisher

Springer Science and Business Media LLC

Subject

Statistics and Probability

Reference11 articles.

1. Agresti, A. (2002). Categorical data analysis, second edn. Wiley Series in Probability and Statistics. New York: Wiley-Interscience [John Wiley & Sons].

2. Bass, R. F. (2011). Stochastic processes. Cambridge series in statistical and probabilistic mathematics. Cambridge University Press.

3. Billingsley, P. (1999). Convergence of probability measures. second edn. Wiley series in probability and statistics: probability and statistics. New York: John Wiley & Sons Inc.

4. Dikta, G., Kvesic, M., & Schmidt, C. (2006). Bootstrap approximations in model checks for binary data. Journal of the American Statistical Association, 101(474), 521–530.

5. Härdle, W., & Stoker, T. M. (1989). Investigating smooth multiple regression by the method of average derivatives. Journal of the American Statistical Association, 84(408), 986–995.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3