Automatic Topic Title Assignment with Word Embedding

Author:

Zammarchi GianpaoloORCID,Romano MaurizioORCID,Conversano ClaudioORCID

Abstract

AbstractIn this paper, we propose TAWE (title assignment with word embedding), a new method to automatically assign titles to topics inferred from sets of documents. This method combines the results obtained from the topic modeling performed with, e.g., latent Dirichlet allocation (LDA) or other suitable methods and the word embedding representation of words in a vector space. This representation preserves the meaning of the words while allowing to find the most suitable word that represents the topic. The procedure is twofold: first, a cleaned text is used to build the LDA model to infer a desirable number of latent topics; second, a reasonable number of words and their weights are extracted from each topic and represented in n-dimensional space using word embedding. Based on the selected weighted words, a centroid is computed, and the closest word is chosen as the title of the topic. To test the method, we used a collection of tweets about climate change downloaded from some of the main newspapers accounts on Twitter. Results showed that TAWE is a suitable method for automatically assigning a topic title.

Funder

Università degli Studi di Cagliari

Publisher

Springer Science and Business Media LLC

Reference54 articles.

1. Bengio, Y., Ducharme, R., Vincent, P., & Jauvin, C. (2000). A neural probabilistic language model. Advances in neural information processing systems, 13.

2. Bhatia, S., Lau, J. H., & Baldwin, T. (2016). Automatic labelling of topics with neural embeddings. In Proceedings of COLING 2016, the 26th international conference on computational linguistics: technical papers (pp. 953–963). Osaka, Japan. The COLING 2016 Organizing Committee. https://aclanthology.org/C16-1091

3. Blei, D. M. (2012). Probabilistic topic models. Communications of the ACM, 55(4), 77–84.

4. Blei, D. M., Ng, A. Y., & Jordan, M. L. (2003). Latent Dirichlet allocation. Journal of Machine Learning Research, 3, 993–1022.

5. Calleo, Y., & Pilla, F. (2022). Using geo-spatial topic modelling to understand the public view of Italian Twitter users: a climate change application. SIS 2022 Proceedings.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3