1. Bengio, Y., Ducharme, R., Vincent, P., & Jauvin, C. (2000). A neural probabilistic language model. Advances in neural information processing systems, 13.
2. Bhatia, S., Lau, J. H., & Baldwin, T. (2016). Automatic labelling of topics with neural embeddings. In Proceedings of COLING 2016, the 26th international conference on computational linguistics: technical papers (pp. 953–963). Osaka, Japan. The COLING 2016 Organizing Committee. https://aclanthology.org/C16-1091
3. Blei, D. M. (2012). Probabilistic topic models. Communications of the ACM, 55(4), 77–84.
4. Blei, D. M., Ng, A. Y., & Jordan, M. L. (2003). Latent Dirichlet allocation. Journal of Machine Learning Research, 3, 993–1022.
5. Calleo, Y., & Pilla, F. (2022). Using geo-spatial topic modelling to understand the public view of Italian Twitter users: a climate change application. SIS 2022 Proceedings.