Hierarchical Means Clustering

Author:

Vichi MaurizioORCID,Cavicchia CarloORCID,Groenen Patrick J. F.ORCID

Abstract

AbstractIn the cluster analysis literature, there are several partitioning (non-hierarchical) methods for clustering multivariate objects based on model estimation. Distinct to these methods is the use of a system of n nested statistical models and the optimization of a loss function to best-fit a clustering model to observed data. Many hierarchical clustering methods are not model-based where hierarchy is obtained using a divisive or agglomerative greedy procedure. This paper aims to fill this gap by proposing a novel hierarchical cluster analysis methodology called Hierarchical Means Clustering. HMC produces a set of nested partitions with a centroid-based model estimated via least-squares by minimizing the total within-cluster deviance of the n partitions in the hierarchy. Hierarchical Means Clustering produces a hierarchy formed by n-1 nested partitions from 2 to n clusters with minimal total cluster deviance. Six real data examples are featured, and key links to k-means, Ward’s method, Bisecting k-means and model-based hierarchical agglomerative clustering methods are discussed.

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Statistics, Probability and Uncertainty,Psychology (miscellaneous),Mathematics (miscellaneous)

Reference37 articles.

1. Arthur, D., & Vassilvitskii, S. (2007). K-Means$$++$$: The Advantages of Careful Seeding. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms. SODA ’07. New Orleans, Louisiana: Society for Industrial and Applied Mathematics, pp. 1027-1035. ISBN: 9780898716245

2. Banfield, J. D., & Raftery, A. E. (1993). Model-based gaussian and non-gaussian clustering. Biometrics, 49, 803–821.

3. Baxter, M. J. (1994). Exploratory multivariate analysis in archaeology. Edinburgh: Edinburgh University Press. . ISBN: 0748604235

4. Celeux, G., & Govaert, G. (1995). Gaussian parsimonious clustering models. Pattern Recognition, 28, 781–793.

5. Coomans, D. et al. (1983). Comparison of multivariate discrimination techniques for clinical data-application to the thyroid functional state. In: Methods of information in medicine 22.2, pp. 93-101.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3