A Bayesian Modelling Framework for Integration of Ecosystem Services into Freshwater Resources Management

Author:

Bruen MichaelORCID,Hallouin Thibault,Christie Michael,Matson Ronan,Siwicka Ewa,Kelly Fiona,Bullock Craig,Feeley Hugh B.,Hannigan Edel,Kelly-Quinn Mary

Abstract

AbstractModels of ecological response to multiple stressors and of the consequences for ecosystem services (ES) delivery are scarce. This paper describes a methodology for constructing a BBN combining catchment and water quality model output, data, and expert knowledge that can support the integration of ES into water resources management. It proposes “small group” workshop methods for elucidating expert knowledge and analyses the areas of agreement and disagreement between experts. The model was developed for four selected ES and for assessing the consequences of management options relating to no-change, riparian management, and decreasing or increasing livestock numbers. Compared with no-change, riparian management and a decrease in livestock numbers improved the ES investigated to varying degrees. Sensitivity analysis of the expert information in the BBN showed the greatest disagreements between experts were mainly for low probability situations and thus had little impact on the results. Conversely, in our applications, the best agreement between experts tended to occur for the higher probability, more likely, situations. This has implications for the practical use of this type of model to support catchment management decisions. The complexity of the relationship between management measures, the water quality and ecological responses and resulting changes in ES must not be a barrier to making decisions in the present time. The interactions of multiple stressors further complicate the situation. However, management decisions typically relate to the overall character of solutions and not their detailed design, which can follow once the nature of the solution has been chosen, for example livestock management or riparian measures or both.

Publisher

Springer Science and Business Media LLC

Subject

Pollution,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3