Abstract
AbstractRock detention structures (RDS) are used in restoration of riparian areas around the world. The purpose of this study was to analyze the effect of RDS installation on vegetation in terms of species abundance and composition. We present the results from 5 years of annual vegetation sampling which focused on short term non-woody vegetation response within the riparian channel at 3 restoration sites across southeastern Arizona. We examined the potential ways that RDS can preserve native species, encourage wetland species, and/or introduce nonnative species using a Control-Impact-Paired-Series study design. Species composition and frequency were measured within quadrats and zones on an annual basis. Multivariate bootstrap analyses were performed, including Bray-Curtis dissimilarity index and non-metric multidimensional scaling ordination. We found that response to RDS was variable and could be related to the level of degradation or proximity to groundwater. The non-degraded site did not show a response to RDS and the severely degraded site showed a slight increase in vegetation frequency, but the moderately degraded site experienced a significant increase. At the moderately degraded site, located between two historic ciénegas (desert wetlands), species composition shifted and nonnative species invaded, dominating the vegetation increase at this location. At the severely degraded site, pre-existing wetland species frequency increased in response to the installation of RDS. These findings extend the understanding of RDS effects on vegetation, provide scenarios to help land and water resource managers understand potential outcomes, and can assist in optimizing success for restoration projects.
Publisher
Springer Science and Business Media LLC
Subject
Pollution,Ecology,Global and Planetary Change
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献