Sustainable Management of the African Great Lake Coastal Areas: Motivations and Perspectives of Community Citizen Scientists

Author:

Moshi Happiness Anold,Shilla Daniel Abel,Brehim Joan,Kimirei Ismael,O’Reilly Catherine,Loiselle Steven

Abstract

AbstractThe long-term sustainability of the African Great Lakes is strongly connected to the management and monitoring of their coastal areas. Yet, the communities that live in these areas are rarely involved in monitoring and have limited influence on key management issues. Furthermore, regulatory activities and knowledge sharing in these transnational ecosystems are strongly limited by funding and infrastructure limitations. Citizen science has great potential to advance both scientific and public understanding of the state of the environment. However, there remains a limited understanding of participants’ motivations and expectations, especially in developing countries, where citizen science has great potential to complement regulatory monitoring. The present study explores the motivations of citizen scientists in villages along Lake Tanganyika’s northern coast and their potential to take a more active role in lake management. Motivations were examined through qualitative interviews, focus groups, and quantitative surveys with 110 citizen scientists and 110 non-citizen scientists from participating villages. Key motivational factors identified were the desire to contribute to scientific research and local knowledge, as well as aspects of financial compensation. The results confirm that participation in citizen science provides many benefits to participants beyond their role as data aggregators and final knowledge users. However, the incentives to participation varied to those typically considered in citizen science programs conducted in developed countries. To create sustainable long-term community based environmental monitoring, these motivations should be incorporated in the program design and participant recruitment.

Funder

Horizon 2020 Framework Programme

Publisher

Springer Science and Business Media LLC

Subject

Pollution,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3