Participatory and Spatially Explicit Assessment to Envision the Future of Land-Use/Land-Cover Change Scenarios on Selected Ecosystem Services in Southwestern Ghana

Author:

Asante-Yeboah EvelynORCID,Koo HongMiORCID,Ros-Tonen Mirjam A. F.ORCID,Sieber StefanORCID,Fürst ChristineORCID

Abstract

AbstractSettlement expansion and commercial agriculture affect landscape sustainability and ecosystem service provision. Integrated landscape approaches are promoted to negotiate trade-offs between competing land uses and their reconciliation. Incorporating local perceptions of landscape dynamics as basis for such negotiations is particularly relevant for sub-Saharan Africa, where most people depend on natural ecosystems for livelihoods and well-being. This study applied participatory scenario building and spatially explicit simulation to unravel perceptions of the potential impact of rubber and settlement expansion on the provision of selected ecosystem services in southwestern Ghana under a business-as-usual scenario. We collected data in workshops and expert surveys on locally relevant ecosystem services, their indicator values, and the probable land-use transitions. The data was translated into an assessment matrix and integrated into a spatially explicit modeling platform, allowing visualization and comparison of the impact on ecosystem service provision of land-use scenarios under rubber plantation and settlement expansion. The results show the capacity of current (2020) and future land-use patterns to provide locally relevant ecosystem services, indicating a decline in capacity of ecosystem service provisioning in the future compared to the 2020 land-use patterns, a threat to the benefits humans derive from ecosystems. This highlights urgent need for policies and measures to control the drivers of land-use/land-cover change. Furthermore, the results emphasize the importance of diversifying land-use/land-cover types for sustainable landscape development. The paper contributes new insights into how spatially explicit and semi-quantitative methods can make stakeholder perceptions of landscape dynamics explicit as a basis for implementing integrated landscape approaches.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3