Abstract
AbstractRemediation methods are gaining acceptance as effective and inexpensive techniques used in the reclamation of degraded areas. The reclamation of post-mining sites has become important for the conservation of soil and vegetation. An assessment of potential productivity of plants based on the depth of their root zone is crucial for the validation of properties of post-mining soils. Our aim was to present soil productivity parameters that would facilitate assessment of various post-mining objects. Soil productivity index (SPI) was calculated to assess soil quality, mainly in areas degraded by hard coal mining. It is based on an equation determining the relationship between the productivity index and the physical, chemical, and hydrological properties of soil. Our study demonstrated the positive effects of enriched sewage sludge with amendments on newly formed soil and plants. The soil productivity index was 0.81, demonstrating the suitable condition of the initial soil resulting from reclamation. This parameter might be important for post-industrial reclamation, such as wasteland intended to be transformed into woodland. Considering the composition of sewage sludge amendments, it can be successfully used as an effective method of restoring and improving both the physical and chemical properties of soils, thus effectively replacing mineral fertilisers. The use of sewage sludge in soil reclamation will be an important method of managing this waste material in post-mining areas.
Publisher
Springer Science and Business Media LLC
Subject
Pollution,Ecology,Global and Planetary Change
Reference66 articles.
1. Acton P, Fox J, Campbell E, Jones A, Rowe H, Martin D, Bryson S (2011) Role of soil health in maintaining environmental sustainability of surface coal mining. Environ Sci Technol 45:10265–10272
2. Antonkiewicz J, Kolodziej B, Bielińska EJ (2016) The use of reed canary grass and giant miscanthus in the phytoremediation of municipal sewage sludge. Environ Sci Pollut Res 23:9505–9517
3. Avera BN, Strahm BD, Burger JA, Zipper EC (2015) Development of ecosystem structure and function on reforested surface-mined lands in the Central Appalachian Coal Basin of the United States. N For 46(15):683–702
4. Baver L, Gardner W, Gardner RW (1972) Soil Physics, 4 edn. Wiley, New York 1972, 8 Nlb 2 498
5. Bes C, Mench M (2008) Remediation of copper-contaminated topsoils from a wood treatment facility using in situ stabilisation. Environ Pollut 156:1128–1138
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献