Translating a Global Emission-Reduction Framework for Subnational Climate Action: A Case Study from the State of Georgia

Author:

Brown Marilyn A.ORCID,Beasley BlairORCID,Atalay Fikret,Cobb Kim M.ORCID,Dwiveldi PuneetORCID,Hubbs JeffreyORCID,Iwaniek David M.ORCID,Mani SudhagarORCID,Matisoff DanielORCID,Mohan Jaqueline E.ORCID,Mullen JeffreyORCID,Oxman MichaelORCID,Rochberg Daniel,Rodgers MichaelORCID,Shepherd Marshall,Simmons RichardORCID,Taylor LauraORCID,Toktay L. BerilORCID

Abstract

AbstractSubnational entities are recognizing the need to systematically examine options for reducing their carbon footprints. However, few robust and comprehensive analyses are available that lay out how US states and regions can most effectively contribute. This paper describes an approach developed for Georgia—a state in the southeastern United States called “Drawdown Georgia”, our research involves (1) understanding Georgia’s baseline carbon footprint and trends, (2) identifying the universe of Georgia-specific carbon-reduction solutions that could be impactful by 2030, (3) estimating the greenhouse gas reduction potential of these high-impact 2030 solutions for Georgia, and (4) estimating associated costs and benefits while also considering how the solutions might impact societal priorities, such as economic development opportunities, public health, environmental benefits, and equity. We began by examining the global solutions identified by Project Drawdown. The resulting 20 high-impact 2030 solutions provide a strategy for reducing Georgia’s carbon footprint in the next decade using market-ready technologies and practices and including negative emission solutions. This paper describes our systematic and replicable process and ends with a discussion of its strengths, weaknesses, and planned future research.

Publisher

Springer Science and Business Media LLC

Subject

Pollution,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3