Factors Controlling Calanoid Copepod Biomass and Distribution in the Upper San Francisco Estuary and Implications for Managing the Imperiled Delta Smelt (Hypomesus transpacificus)

Author:

Hamilton ScottORCID,Bartell Steve,Pierson James,Murphy Dennis

Abstract

AbstractDelta smelt struggle to persist in a dramatically altered estuarine environment. Complex and incompletely understood relationships between food availability, environmental stressors, other components of the species’ habitat, and the abundance of delta smelt impede the effective management and recovery of the species. The empirical modeling presented in this study quantitatively describes spatial-temporal biomass values of calanoid copepods, a key prey item for delta smelt, in relation to multiple potential controlling factors. The results underscore the role that river flows through the estuary have in determining prey availability, and demonstrate contributions of water temperature, salinity, and macronutrients in determining copepod biomass. The analysis also shows the importance of non-native, invasive bivalves in determining copepod biomass. Importantly, the analysis describes spatial-temporal shifts in the relative importance of modeled covariates across sampling locations in the Delta. Model results indicate that increasing flows in the fall of wetter years adversely affected copepod biomass, while increases in flows in the spring of drier years provided regional increases in biomass. The results of this analysis can inform resource management decisions and contribute to a comprehensive model that can meaningfully guide efforts to recover the imperiled delta smelt.

Funder

Center for California Water Resources Policy and Management

Publisher

Springer Science and Business Media LLC

Subject

Pollution,Ecology,Global and Planetary Change

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3