Artificial Intelligence and Digital Ecosystems in Education: A Review

Author:

Rojas Milena PatriciaORCID,Chiappe AndrésORCID

Abstract

AbstractDigital ecosystems are a set of interconnected elements that enable an integrated and seamless digital experience. In education, the use of Artificial Intelligence (AI) has great potential to improve teaching and learning. However, for the expectations placed on the educational use of AI to be met, it is necessary to develop adequate digital ecosystems that allow its effective implementation. Therefore, it is of great importance to deepen the understanding of these ecosystems and their key elements for such implementation. For this purpose, a systematic review of the literature on this subject was conducted, which included the analysis of 76 articles published in peer-reviewed journals. The main results of the review highlight the current focus of research in that matter, which relates digital ecosystems and artificial intelligence around the personalization of learning. Also, some aspects related to this relationship are analyzed from four categories: networks, applications, services, and users.

Funder

University of La Sabana

Publisher

Springer Science and Business Media LLC

Reference76 articles.

1. Anwar, M. J., Gill, A. Q., & Beydoun, G. (2018). A review of information privacy laws and standards for secure digital ecosystems. In Australasian Conference on Information Systems 2018 (pp. 1–12). Sydney: University of Technology, Sydney. https://doi.org/10.5130/acis2018.bb.

2. Bazán, P. A., Clara, L., Ceballos, H., Giorgetti, J. L., Ugalde, G., D. F., & Moreno, D. A. (2023). Integrabilidad y ecosistemas digitales: problemática, fundamentos y normalización. In XXVIII Congreso Argentino de Ciencias de la Computación (pp. 807–816). Presented at the XXVIII Congreso Argentino de Ciencias de la Computación, La Rioja: Editorial de la Universidad Nacional de La Rioja (EUDELAR). http://sedici.unlp.edu.ar/handle/10915/149433. Accessed 23 January 2024.

3. Belessova, D., Ibashova, A., Bosova, L., & Shaimerdenova, G. (2023). Digital Learning Ecosystem: Current state, prospects, and hurdles. Open Education Studies, 5(1), 20220179. https://doi.org/10.1515/edu-2022-0179.

4. Biuk-Aghai, R. P., Kelen, C., & Venkatesan, H. (2008). Visualization of interactions in collaborative writing. In 2008 2nd IEEE International Conference on Digital Ecosystems and Technologies (pp. 97–102). Presented at the 2008 2nd IEEE International Conference on Digital Ecosystems and Technologies (DEST), Phitsanuloke, Thailand: IEEE. https://doi.org/10.1109/DEST.2008.4635141.

5. Burbano, G., D. C., & Soler, J. A. (2020). Learning analytics in M-learning: Periodontic Education. In M. F. Mata-Rivera, R. Zagal-Flores, & C. Barria-Huidobro (Eds.), Telematics and Computing (Vol. 1280, pp. 128–139). Springer International Publishing. https://doi.org/10.1007/978-3-030-62554-2_10.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3