Towards a Physiological Computing Infrastructure for Researching Students’ Flow in Remote Learning

Author:

Li Maximilian XilingORCID,Nadj Mario,Maedche Alexander,Ifenthaler Dirk,Wöhler Johannes

Abstract

AbstractWith the advent of physiological computing systems, new avenues are emerging for the field of learning analytics related to the potential integration of physiological data. To this end, we developed a physiological computing infrastructure to collect physiological data, surveys, and browsing behavior data to capture students’ learning journey in remote learning. Specifically, our solution is based on the Raspberry Pi minicomputer and Polar H10 chest belt. In this work-in-progress paper, we present preliminary results and experiences we collected from a field study with medical students using our developed infrastructure. Our results do not only provide a new direction for more effectively capturing different types of data in remote learning by addressing the underlying challenges of remote setups, but also serve as a foundation for future work on developing a less obtrusive, (near) real-time measurement method based on the classification of cognitive-affective states such as flow or other learning-relevant constructs with the captured data using supervised machine learning.

Funder

Karlsruher Institut für Technologie (KIT)

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Human-Computer Interaction,Education,Mathematics (miscellaneous)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3