Sakawa River plume in Sagami Bay, Japan under weak wind condition: numerical simulation of coastal ocean dynamics and in situ observations for validation

Author:

Arai Riwa,Nishi YoshikiORCID,Fujiwara Yasunori,Zhao Jinrui,Jamil Muhammad Zeeshan

Abstract

AbstractThis study proposes a method for estimating river plume length from water levels and river discharge rates. A numerical model for coastal ocean dynamics was refined by comparing thermohaline fields calculated using the model with those measured off the mouth of the Sakawa River in Sagami Bay, Japan. The model successfully captured the reduction in salinity within the surface 1.0-m layer caused by riverine water transport. The simulated surface salinity maps revealed that the dynamic motions of the river plumes were primarily driven by one of the two diurnal occurrences of tidal current intensification. Regression analyses of the simulated results demonstrated that the river plume lengths were closely correlated with the water levels and river discharge rates, and that they could be accurately estimated from preceding river discharge rates under weak wind condition.

Funder

Japan Society for the Promotion of Science

Yokohama National University

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Ocean Engineering,Oceanography

Reference36 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3