Abstract
AbstractRecently, a considerable number of research and development projects have focused on automatic vessels. A highly realistic simulator is needed to validate control algorithms for autonomous vessels. For instance, when considering the automatic berthing/unberthing of a vessel, the effect of wind in such low-speed operations cannot be ignored because of the low rudder performance during slow harbor maneuvers. Therefore, a simulator used to validate an automatic berthing/unberthing control algorithm should be able to reproduce the time histories of wind speed and wind direction realistically. Therefore, in our first report on this topic, to obtain the wind speed distribution, we proposed a simple algorithm to generate the time series and distribution of wind speed only from the mean wind speed. However, for wind direction, the spectral distribution could not be determined based on our literature surveys, and hence, a simple method for estimating the coefficients of the stochastic differential equation (SDE) could not be proposed. In this study, we propose a new methodology for generating the time history of wind direction based on the results of Kuwajima et al.’s work. They proposed a regression equation of the standard deviation of wind direction variation for the mean wind speed. In this study, we assumed that the wind direction distribution can be represented by a linear filter as in our previous paper, and its coefficients are derived from Kuwajima’s proposed equation. Then, as in the previous report, the time series of wind speed and wind direction can be calculated easily by analytically solving the one-dimensional SDE. The joint probability density functions of wind speed and wind direction obtained by computing them independently agree well with the measurement results.
Funder
Japan Society for the Promotion of Science
Osaka University
Publisher
Springer Science and Business Media LLC
Reference31 articles.
1. Maki A, Maruyama Y, Dostal L, Sakai M, Sawada R, Sasa K, Umeda N (2022) Practical method for evaluating wind influence on autonomous ship operations. J Mar Sci Technol 27(4):1302
2. Maruyama Y, Umeda N, Maki A (2022) Measures for avoiding self-repetition effect in the direct stability assessment. In: Proceedings of the 18th international ship stability workshop
3. Shuku M, Shimada H, Fujii H, Toyoda S, Ikegami H, Ando H (1979) The motions of moored floating storage barge in shallow water (non-linear mathematical model and numerical simulation) (in japanese). J Soc Naval Arch Jpn 146:245
4. von Kármán T (1948) Progress in the statistical theory of turbulence. Proc Natl Acad Sci 34(11):530
5. Hino M (1971) Spectrum of gusty wind. In: Proceedings of the 3rd international conference on wind effects on buildings and structures, Tokyo, Japan, p 77