Author:
Sandvik Endre,Nielsen Jørgen Bremnes,Asbjørnslett Bjørn Egil,Pedersen Eilif,Fagerholt Kjetil
Abstract
AbstractIn this paper, a model for implementation of sea passage operational scenarios in the context of simulation-based design of ships is presented. To facilitate the transition towards more energy-efficient shipping, the ability to evaluate and understand ship and ship system behaviour in operational conditions is central. By introducing an optimization model in virtual testing frameworks, operational scenarios can be generated that enhances scenario relevance and testing abilities. The optimization for simulation approach provides speed and course commands based on an optimization framework which factors in the operational considerations and sea state conditions in the area of operation. Impact on the understanding of ship system performance using simulation is assessed in a case study where a sea passage over the North Pacific is replicated for varying operational scenarios and seasons. It is found that the variation of operational scenario, affecting the sea state and speed relation, causes significant differences in required power and fuel consumption estimates. Sea passage control is found to be an important dimension in virtual testing approaches.
Funder
Norges Forskningsråd
NTNU Norwegian University of Science and Technology
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Ocean Engineering,Oceanography
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献