Operational sea passage scenario generation for virtual testing of ships using an optimization for simulation approach

Author:

Sandvik Endre,Nielsen Jørgen Bremnes,Asbjørnslett Bjørn Egil,Pedersen Eilif,Fagerholt Kjetil

Abstract

AbstractIn this paper, a model for implementation of sea passage operational scenarios in the context of simulation-based design of ships is presented. To facilitate the transition towards more energy-efficient shipping, the ability to evaluate and understand ship and ship system behaviour in operational conditions is central. By introducing an optimization model in virtual testing frameworks, operational scenarios can be generated that enhances scenario relevance and testing abilities. The optimization for simulation approach provides speed and course commands based on an optimization framework which factors in the operational considerations and sea state conditions in the area of operation. Impact on the understanding of ship system performance using simulation is assessed in a case study where a sea passage over the North Pacific is replicated for varying operational scenarios and seasons. It is found that the variation of operational scenario, affecting the sea state and speed relation, causes significant differences in required power and fuel consumption estimates. Sea passage control is found to be an important dimension in virtual testing approaches.

Funder

Norges Forskningsråd

NTNU Norwegian University of Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Ocean Engineering,Oceanography

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A fast simulation method for the probabilistic assessment of emissions in cruise ship’s itinerary planning;Ocean Engineering;2024-11

2. Research Status and Technological Prospects of Scenario Generation Methods for Ship Collision Avoidance Tests;2023 7th International Conference on Transportation Information and Safety (ICTIS);2023-08-04

3. Co-Simulation of a Marine Hybrid Power System for Real-Time Virtual Testing;2021 IEEE Transportation Electrification Conference & Expo (ITEC);2021-06-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3