Analysis of Subcycle Electro-Optic Sampling Without Background
-
Published:2021-04-07
Issue:6
Volume:42
Page:701-714
-
ISSN:1866-6892
-
Container-title:Journal of Infrared, Millimeter, and Terahertz Waves
-
language:en
-
Short-container-title:J Infrared Milli Terahz Waves
Author:
Beckh CorneliusORCID, Sulzer PhilippORCID, Fritzsche Niklas, Riek Claudius, Leitenstorfer AlfredORCID
Abstract
AbstractWe explore background-free options to detect mid-infrared (MIR) electric transients. The MIR field and a near-infrared probe interact via sum- (SFG) and difference-frequency generation (DFG) in an electro-optic crystal. An intuitive picture based on a phasor representation and rigorous numerical calculations are used for analysis. It turns out that separating photons generated either by SFG or DFG from the local oscillator via spectral filtering leads to a signal purely proportional the MIR intensity envelope. Background-free phase information may be extracted in a spectral window containing both SFG and DFG components and blocking the local oscillator background based on its orthogonal polarization. This variant leads to signal proportional to the square of the MIR field amplitude. It is limited by the finite efficiency of polarization filtering. The Hilbert transform as a conjugate variable to the electric field in the time domain turns out to play a fundamental role for the context discussed in this paper.
Funder
Deutsche Forschungsgemeinschaft
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Condensed Matter Physics,Instrumentation,Radiation
Reference23 articles.
1. C. Riek et al., “Direct sampling of electric-field vacuum fluctuations,” Science (80-. )., vol. 350, no. 6259, pp. 420–423, Oct. 2015, doi: https://doi.org/10.1126/science.aac9788. 2. I. C. Benea-Chelmus, F. F. Settembrini, G. Scalari, and J. Faist, “Electric field correlation measurements on the electromagnetic vacuum state,” Nature, vol. 568, no. 7751, pp. 202–206, 2019, doi: https://doi.org/10.1038/s41586-019-1083-9. 3. C. Riek, “Subcycle quantum electrodynamics,” Nat. Publ. Gr., vol. 541, no. 7637, pp. 376–379, 2017, doi: https://doi.org/10.1038/nature21024. 4. M. Kizmann, T. L. de M. Guedes, D. V. Seletskiy, A. S. Moskalenko, A. Leitenstorfer, and G. Burkard, “Subcycle squeezing of light from a time flow perspective,” 2018, [Online]. Available: http://arxiv.org/abs/1807.10519. 5. T. L. M. Guedes, M. Kizmann, D. V. Seletskiy, A. Leitenstorfer, G. Burkard, and A. S. Moskalenko, “Spectra of Ultrabroadband Squeezed Pulses and the Finite-Time Unruh-Davies Effect,” Phys. Rev. Lett., vol. 122, no. 5, p. 53604, 2019, doi: https://doi.org/10.1103/PhysRevLett.122.053604.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|