Silicon Lens Optimization to Create Diffuse, Uniform Illumination from Incoherent THz Source Arrays

Author:

Zatta RobinORCID,Headland Daniel,Ashna Eamal,Jain Ritesh,Hillger Philipp,Grzyb Janusz,Pfeiffer Ullrich R.

Abstract

AbstractArrays of terahertz (THz) sources provide a pathway to overcoming the radiation power limitations of single sources. Several independent sources of THz radiation may be implemented in a single integrated circuit, thereby realizing a monolithic THz source array of high output power. Integrated THz sources must generally be backside-coupled to extended hemispherical dielectric lenses in order to suppress substrate modes and extract THz power. However, this lens also increases antenna gain and thereby produces several non-overlapping beams. This is because individual source pixels are relatively large. Hence, their spatial separation on-chip translates to angular separation in the far-field. In other words, there are gaps in their field of view into which very little THz power is projected. Therefore, they cannot homogeneously illuminate an imaging target. This article presents a simple, practical, and scalable method to convert arrays of incoherent THz sources into a diffuse, uniform illumination source without the need for reducing pixel size. Briefly, individual beam divergence is optimized by tailoring the dimensions of the extended hemispherical dielectric lens such that the far-field beams of adjacent source pixels overlap and combine to form a uniform far-field beam. We applied this method to an incoherent 8 × 8-pixel THz source array radiating 10.3 dBm at 0.42 THz as a proof of concept and thereby realized a 10.3-dBm 0.42-THz diffuse, uniform illumination source that was then deployed in a demonstration of THz active imaging.

Funder

Deutsche Forschungsgemeinschaft

H2020 European Research Council

Bergische Universität Wuppertal

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Instrumentation,Radiation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Terahertz hologram for homogenous illumination;2022 47th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz);2022-08-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3