Preservation of Sensitive Data Using Multi-Level Blockchain-based Secured Framework for Edge Network Devices

Author:

Awasthi CharuORCID,Mishra Prashant KumarORCID,Pal Pawan KumarORCID,Khan Surbhi Bhatia,Agarwal Ambuj KumarORCID,Gadekallu Thippa Reddy,Malibari Areej A.

Abstract

AbstractThe proliferation of IoT devices has influenced end users in several aspects. Yottabytes (YB) of information are being produced in the IoT environs because of the ever-increasing utilization capacity of the Internet. Since sensitive information, as well as privacy problems, always seem to be an unsolved problem, even with best-in-class in-formation governance standards, it is difficult to bolster defensive security capabilities. Secure data sharing across disparate systems is made possible by blockchain technology, which operates on a decentralized computing paradigm. In the ever-changing IoT environments, blockchain technology provides irreversibility (immutability) usage across a wide range of services and use cases. Therefore, blockchain technology can be leveraged to securely hold private information, even in the dynamicity context of the IoT. However, as the rate of change in IoT networks accelerates, every potential weak point in the system is exposed, making it more challenging to keep sensitive data se-cure. In this study, we adopted a Multi-level Blockchain-based Secured Framework (M-BSF) to provide multi-level protection for sensitive data in the face of threats to IoT-based networking systems. The envisioned M-BSF framework incorporates edge-level, fog-level, and cloud-level security. At edge- and fog-level security, baby kyber and scaling kyber cryptosystems are applied to ensure data preservation. Kyber is a cryptosystem scheme that adopts public-key encryption and private-key decryption processes. Each block of the blockchain uses the cloud-based Argon-2di hashing method for cloud-level data storage, providing the highest level of confidentiality. Argon-2di is a stable hashing algorithm that uses a hybrid approach to access the memory that relied on dependent and independent memory features. Based on the attack-resistant rate (> 96%), computational cost (in time), and other main metrics, the proposed M-BSF security architecture appears to be an acceptable alternative to the current methodologies.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Hardware and Architecture,Information Systems,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3