Workload Time Series Cumulative Prediction Mechanism for Cloud Resources Using Neural Machine Translation Technique

Author:

Al-Sayed Mustafa M.

Abstract

AbstractDynamic resource allocation and auto-scaling represent effective solutions for many cloud challenges, such as over-provisioning (i.e., energy-wasting, and Service level Agreement “SLA” violation) and under-provisioning (i.e., Quality of Service “QoS” dropping) of resources. Early workload prediction techniques play an important role in the success of these solutions. Unfortunately, no prediction technique is perfect and suitable enough for most workloads, particularly in cloud environments. Statistical and machine learning techniques may not be appropriate for predicting workloads, due to instability and dependency of cloud resources’ workloads. Although Recurrent Neural Network (RNN) deep learning technique considers these shortcomings, it provides poor results for long-term prediction. On the other hand, Sequence-to-Sequence neural machine translation technique (Seq2Seq) is effectively used for translating long texts. In this paper, workload sequence prediction is treated as a translation problem. Therefore, an Attention Seq2Seq-based technique is proposed for predicting cloud resources’ workloads. To validate the proposed technique, real-world dataset collected from a Google cluster of 11 k machines is used. For improving the performance of the proposed technique, a novel procedure called cumulative-validation is proposed as an alternative procedure to cross-validation. Results show the effectiveness of the proposed technique for predicting workloads of cloud resources in terms of accuracy by 98.1% compared to 91% and 85% for other sequence-based techniques, i.e. Continuous Time Markov Chain based models and Long short-term memory based models, respectively. Also, the proposed cumulative-validation procedure achieves a computational time superiority of 57% less compared to the cross-validation with a slight variation of 0.006 in prediction accuracy.

Funder

Minia University

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Hardware and Architecture,Information Systems,Software

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Brief Review on Prediction Methods for Cloud Resource Management;2024 9th IEEE International Conference on Smart Cloud (SmartCloud);2024-05-10

2. Deep CNN and LSTM Approaches for Efficient Workload Prediction in Cloud Environment;Procedia Computer Science;2024

3. Construction and Optimization of English Machine Translation Model Based on Hybrid Intelligent Algorithm;Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering;2024

4. Workload prediction for SLA performance in cloud environment: ESANN approach;Intelligent Decision Technologies;2023-11-20

5. ECBTNet: English-Foreign Chinese intelligent translation via multi-subspace attention and hyperbolic tangent LSTM;Neural Computing and Applications;2023-06-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3