A Reliable Large Distributed Object Store Based Platform for Collecting Event Metadata

Author:

Fernández Casaní ÁlvaroORCID,Orduña Juan M.,Sánchez Javier,González de la Hoz Santiago

Abstract

AbstractThe Large Hadron Collider (LHC) is about to enter its third run at unprecedented energies. The experiments at the LHC face computational challenges with enormous data volumes that need to be analysed by thousands of physics users. The ATLAS EventIndex project, currently running in production, builds a complete catalogue of particle collisions, or events, for the ATLAS experiment at the LHC. The distributed nature of the experiment data model is exploited by running jobs at over one hundred Grid data centers worldwide. Millions of files with petabytes of data are indexed, extracting a small quantity of metadata per event, that is conveyed with a data collection system in real time to a central Hadoop instance at CERN. After a successful first implementation based on a messaging system, some issues suggested performance bottlenecks for the challenging higher rates in next runs of the experiment. In this work we characterize the weaknesses of the previous messaging system, regarding complexity, scalability, performance and resource consumption. A new approach based on an object-based storage method was designed and implemented, taking into account the lessons learned and leveraging the ATLAS experience with this kind of systems. We present the experiment that we run during three months in the real production scenario worldwide, in order to evaluate the messaging and object store approaches. The results of the experiment show that the new object-based storage method can efficiently support large-scale data collection for big data environments like the next runs of the ATLAS experiment at the LHC.

Funder

MICINN

micinn

Instituto de Física Corpuscular

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Hardware and Architecture,Information Systems,Software

Reference25 articles.

1. ATLAS Collaboration: The ATLAS experiment at the CERN Large Hadron Collider. J. Instrum. 3(08), S08003 (2008)

2. Barberis, D., Cárdenas Zárate, SE, Cranshaw, J., Favareto, A., Fernández Casaní, A, Gallas, E.J., Glasman, C., González De La Hoz, S, Hřivnáč, J, Malon, D., Prokoshin, F., Salt Cairols, J., Sánchez, J, Többicke, R, Yuan, R.: The ATLAS EventIndex: Architecture, design choices, deployment and first operation experience. J. Phys.: Conf. Ser. 664(4), 042003 (2015)

3. Barberis, D., Cranshaw, J., Favareto, A., Fernández Casaní, A, Gallas, E., González de la Hoz, S, Hřivnáč, J, Malon, D., Nowak, M., Prokoshin, F., Salt, J., Sánchez Martínez, J, Többicke, R, Yuan, R.: The ATLAS EventIndex: Full chain deployment and first operation. Nuclear and Particle Physics Proceedings 273-275, 913–918 (2016)

4. White, T.: Hadoop: The definitive guide. O’Reilly Media, Inc. (2012)

5. Sánchez, J, Casaní, AF, de la Hoz, S.G.: Distributed data collection for the ATLAS EventIndex. J. Phys.: Conf. Ser. 664(4), 042046 (2015)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. HBase/Phoenix-based Data Collection and Storage for the ATLAS EventIndex;EPJ Web of Conferences;2024

2. Deployment and Operation of the ATLAS EventIndex for LHC Run 3;EPJ Web of Conferences;2024

3. The ATLAS EventIndex;Computing and Software for Big Science;2023-03-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3