Author:
Wang Tao,Li Wenwei,Rong Huigui,Yue Ziqiao,Zhou Jiancun
Funder
the Research Foundation of Education, Bureau of Hunan Province
the Research Foundation of Education Bureau of Hunan Province
the Special Funds for Construction of Innovative Provinces in Hunan Province of China
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems
Reference30 articles.
1. Phua, C., Lee, V., Smith, K. and Gayler, R., (2010). A comprehensive survey of data mining-based fraud detection research. arXiv preprint arXiv:1009.6119.
2. Schlegl, T., Seeböck, P., Waldstein, S. M., Schmidt-Erfurth, U., & Langs, G. (2017). Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. International conference on information processing in medical imaging (pp. 146–157). Cham: Springer.
3. Garcia-Teodoro, P., Diaz-Verdejo, J., Maciá-Fernández, G., & Vázquez, E. (2009). Anomaly-based network intrusion detection Techniques systems and challenges. Computers & security, 28(1–2), 18–28.
4. Ian, G., Jean, P.A., Mehdi, M., Bing, X., David, W.F., Sherjil, O. and Aaron, C., (2014) Generative adversarial nets. In Advances in neural information processing systems.
5. Erfani, S. M., Rajasegarar, S., Karunasekera, S., & Leckie, C. (2016). High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning. Pattern Recognition, 58, 121–134.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献