Mitigating communications threats in decentralized federated learning through moving target defense

Author:

Martínez Beltrán Enrique TomásORCID,Sánchez Sánchez Pedro Miguel,López Bernal Sergio,Bovet Gérôme,Gil Pérez Manuel,Martínez Pérez Gregorio,Huertas Celdrán Alberto

Abstract

AbstractThe rise of Decentralized Federated Learning (DFL) has enabled the training of machine learning models across federated participants, fostering decentralized model aggregation and reducing dependence on a server. However, this approach introduces unique communication security challenges that have yet to be thoroughly addressed in the literature. These challenges primarily originate from the decentralized nature of the aggregation process, the varied roles and responsibilities of the participants, and the absence of a central authority to oversee and mitigate threats. Addressing these challenges, this paper first delineates a comprehensive threat model focused on DFL communications. In response to these identified risks, this work introduces a security module to counter communication-based attacks for DFL platforms. The module combines security techniques such as symmetric and asymmetric encryption with Moving Target Defense (MTD) techniques, including random neighbor selection and IP/port switching. The security module is implemented in a DFL platform, Fedstellar, allowing the deployment and monitoring of the federation. A DFL scenario with physical and virtual deployments have been executed, encompassing three security configurations: (i) a baseline without security, (ii) an encrypted configuration, and (iii) a configuration integrating both encryption and MTD techniques. The effectiveness of the security module is validated through experiments with the MNIST dataset and eclipse attacks.The results showed an average F1 score of 95%, with the most secure configuration resulting in CPU usage peaking at 68% (± 9%) in virtual deployments and network traffic reaching 480.8 MB (± 18 MB), effectively mitigating risks associated with eavesdropping or eclipse attacks.

Funder

Spanish National Institute of Cybersecurity

Fundación Séneca

the Swiss Federal Office for Defense Procurement

University of Zürich UZH

Universidad de Murcia

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Voyager: MTD-Based Aggregation Protocol for Mitigating Poisoning Attacks on DFL;NOMS 2024-2024 IEEE Network Operations and Management Symposium;2024-05-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3