Privacy preserving semantic trajectory data publishing for mobile location-based services

Author:

Tan Rong,Tao Yuan,Si Wen,Zhang Yuan-YuanORCID

Abstract

Abstract The development of wireless technologies and the popularity of mobile devices is responsible for generating large amounts of trajectory data for moving objects. Trajectory datasets have spatiotemporal features and are a rich information source. The mining of trajectory data can reveal interesting patterns of human activities and behaviors. However, trajectory data can also be exploited to disclose users’ privacy information, e.g., the places they live and work, which could be abused by a malicious user. Therefore, it is very important to protect the users’ privacy before publishing any trajectory data. While most previous research on this subject has only considered the privacy protection of stay points, this paper distinguishes itself by modeling and processing semantic trajectories, which not only contain spatiotemporal data but also involve POI information and the users’ motion modes such as walking, running, driving, etc. Accordingly, in this research, semantic trajectory anonymizing based on the k-anonymity model is proposed that can form sensitive areas that contain k − 1 POI points that are similar to the sensitive points. Then, trajectory ambiguity is executed based on the motion modes, road network topologies and road weights in the sensitive area. Finally, a similarity comparison is performed to obtain the recordable and releasable anonymity trajectory sets. Experimental results show that this method performs efficiently and provides high privacy levels.

Funder

Natural Science Foundation of Shanghai

Zhejiang Province medical and health science and technology platform project

Research Fund of National 12th Five-Year Education Plan

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3