A mobility aware duty cycling and preambling solution for wireless sensor network with mobile sink node

Author:

Thomson Craig,Wadhaj Isam,Tan Zhiyuan,Al-Dubai Ahmed

Abstract

AbstractUtilising the mobilisation of a sink node in a wireless sensor network to combat the energy hole, or hotspot issue, is well referenced. However, another issue, that of energy spikes may remain. With the mobile sink node potentially communicating with some nodes more than others. In this study we propose the Mobility Aware Duty Cycling and Dynamic Preambling Algorithm (MADCaDPAL). This algorithm utilises an existing solution where a communication threshold is built between a mobile sink node using predictable mobility and static nodes on its path. MADCaDPAL bases decisions relating to node sleep function, moving to clear channel assessment and the subsequent sending of preambles on the relation between the threshold built by the static node and the position of the mobile sink node. MADCaDPAL achieves a reduction in average energy consumption of up to 80%, this when used in conjunction with a lightweight carrier-sense multiple access based MAC implementation. Maximum energy consumption amongst individual nodes is also brought closer to the average, reducing energy spikes and subsequently improving network lifetime. Additionally, frame delivery to the sink is improved overall.

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3