1. Peltonen, E., Bennis, M., Capobianco, M., Debbah, M., Ding, A., Gil-Castiñeira, F., Jurmu, M., Karvonen, T., Kelanti, M., Kliks, A., & Yang, T. (2020). 6G white paper on edge intelligence. arXiv preprint arXiv:2004.14850.
2. Jadhav, S., & Jadhav, S. (2021). An organized study of congestion control approaches in wireless sensor networks. Future trends in 5G and 6G: Challenges, architecture, and applications (pp. 1–23). CRC Press.
3. Hui, Y., Cheng, N., Huang, Y., Chen, R., Xiao, X., Li, C., & Mao, G. (2021). Personalized vehicular edge computing in 6G. IEEE Network, 9, 5920–5931.
4. Jaiswal, K., & Anand, V. (2021). A Grey-Wolf-based Optimized Clustering approach to improve QoS in wireless sensor networks for IoT applications. Peer-to-Peer Networking and Applications 1–20.
5. Du, J., Jiang, C., Wang, J., Ren, Y., & Debbah, M. (2020). Machine learning for 6G wireless networks: Carrying forward enhanced bandwidth, massive access, and ultrareliable/low-latency service. IEEE Vehicular Technology Magazine, 15(4), 122–134.