The canonical wall structure and intrinsic mirror symmetry

Author:

Gross Mark,Siebert Bernd

Abstract

AbstractAs announced in Gross and Siebert (in Algebraic geometry: Salt Lake City 2015, Proceedings of Symposia in Pure Mathematics, vol 97, no 2. AMS, Providence, pp 199–230, 2018) in 2016, we construct and prove consistency of the canonical wall structure. This construction starts with a log Calabi–Yau pair (XD) and produces a wall structure, as defined in Gross et al. (Mem. Amer. Math. Soc. 278(1376), 1376, 1–103, 2022). Roughly put, the canonical wall structure is a data structure which encodes an algebro-geometric analogue of counts of Maslov index zero disks. These enumerative invariants are defined in terms of the punctured invariants of Abramovich et al. (Punctured Gromov–Witten invariants, 2020. arXiv:2009.07720v2 [math.AG]). There are then two main theorems of the paper. First, we prove consistency of the canonical wall structure, so that, using the setup of Gross et al. (Mem. Amer. Math. Soc. 278(1376), 1376, 1–103, 2022), the canonical wall structure gives rise to a mirror family. Second, we prove that this mirror family coincides with the intrinsic mirror constructed in Gross and Siebert (Intrinsic mirror symmetry, 2019. arXiv:1909.07649v2 [math.AG]). While the setup of this paper is narrower than that of Gross and Siebert (Intrinsic mirror symmetry, 2019. arXiv:1909.07649v2 [math.AG]), it gives a more detailed description of the mirror.

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics

Reference82 articles.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quivers and curves in higher dimension;Transactions of the American Mathematical Society;2024-09-03

2. Newton–Okounkov bodies and minimal models for cluster varieties;Advances in Mathematics;2024-06

3. The Proper Landau–Ginzburg Potential, Intrinsic Mirror Symmetry and the Relative Mirror Map;Communications in Mathematical Physics;2024-03

4. Logarithmic quasimaps;Advances in Mathematics;2024-02

5. Scattering diagrams in mirror symmetry;Bollettino dell'Unione Matematica Italiana;2023-09-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3