On the conformal walk dimension: quasisymmetric uniformization for symmetric diffusions

Author:

Kajino Naotaka,Murugan Mathav

Abstract

AbstractWe introduce the notion of conformal walk dimension, which serves as a bridge between elliptic and parabolic Harnack inequalities. The importance of this notion is due to the fact that, for a given strongly local, regular symmetric Dirichlet space in which every metric ball has compact closure (MMD space), the finiteness of the conformal walk dimension characterizes the conjunction of the metric doubling property and the elliptic Harnack inequality. Roughly speaking, the conformal walk dimension of an MMD space is defined as the infimum over all possible values of the walk dimension with which the parabolic Harnack inequality can be made to hold by a time change of the associated diffusion and by a quasisymmetric change of the metric. We show that the conformal walk dimension of any MMD space satisfying the metric doubling property and the elliptic Harnack inequality is two, and provide a necessary condition for a pair of such changes to attain the infimum defining the conformal walk dimension when it is attained by the original pair. We also prove a necessary condition for the existence of such a pair attaining the infimum in the setting of a self-similar Dirichlet form on a self-similar set, and apply it to show that the infimum fails to be attained for the Vicsek set and the N-dimensional Sierpiński gasket with $$N\ge 3$$ N 3 , in contrast to the attainment for the two-dimensional Sierpiński gasket due to Kigami (Math Ann 340(4):781–804, 2008).

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics

Reference92 articles.

1. Andres, S., Barlow, M.T.: Energy inequalities for cutoff-functions and some applications. J. Reine Angew. Math. 699, 183–215 (2015)

2. Ariyoshi, T., Hino, M.: Small-time asymptotic estimates in local Dirichlet spaces. Electron. J. Probab. 10(37), 1236–1259 (2005)

3. Lecture Notes in Mathematics;MT Barlow,1998

4. Barlow, M.T., Bass, R.F.: The construction of Brownian motion on the Sierpiński carpet. Ann. Inst. H. Poincaré Probab. Stat. 25(3), 225–257 (1989)

5. Barlow, M.T., Bass, R.F.: Brownian motion and harmonic analysis on Sierpiński carpets. Canad. J. Math. 51(4), 673–744 (1999)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Boundary Harnack Principle on Uniform Domains;Potential Analysis;2024-07-22

2. On Kigami’s conjecture of the embedding ^{}()⊂();Proceedings of the American Mathematical Society;2024-06-05

3. Heat kernel for reflected diffusion and extension property on uniform domains;Probability Theory and Related Fields;2024-03-05

4. Some Inequalities Between Ahlfors Regular Conformal Dimension And Spectral Dimensions For Resistance Forms;Potential Analysis;2023-11-11

5. Construction of -energy and associated energy measures on Sierpiński carpets;Transactions of the American Mathematical Society;2023-10-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3