Author:
Llosa Isenrich Claudio,Py Pierre
Abstract
AbstractWe prove that in a cocompact complex hyperbolic arithmetic lattice $\Gamma < {\mathrm{PU}}(m,1)$
Γ
<
PU
(
m
,
1
)
of the simplest type, deep enough finite index subgroups admit plenty of homomorphisms to ℤ with kernel of type $\mathscr{F}_{m-1}$
F
m
−
1
but not of type $\mathscr{F}_{m}$
F
m
. This provides many finitely presented non-hyperbolic subgroups of hyperbolic groups and answers an old question of Brady. Our method also yields a proof of a special case of Singer’s conjecture for aspherical Kähler manifolds.
Funder
Karlsruher Institut für Technologie (KIT)
Publisher
Springer Science and Business Media LLC
Reference55 articles.
1. Agol, I.: Virtual Betti numbers of symmetric spaces. Preprint (2006). arXiv:math/0611828
2. Agol, I.: Criteria for virtual fibering. J. Topol. 1(2), 269–284 (2008)
3. Agol, I., Stover, M.: Congruence RFRS towers, with an appendix by M. H. Şengün. Ann. Inst. Fourier (Grenoble) 73(1), 307–333 (2023)
4. Mathematical Surveys and Monographs;J. Amorós,1996
5. Bestvina, M., Brady, N.: Morse theory and finiteness properties of groups. Invent. Math. 129(3), 445–470 (1997)