Author:
Davison Ben,Mandel Travis
Abstract
AbstractWe construct “quantum theta bases,” extending the set of quantum cluster monomials, for various versions of skew-symmetric quantum cluster algebras. These bases consist precisely of the indecomposable universally positive elements of the algebras they generate, and the structure constants for their multiplication are Laurent polynomials in the quantum parameter with non-negative integer coefficients, proving the quantum strong cluster positivity conjecture for these algebras. The classical limits recover the theta bases considered by Gross–Hacking–Keel–Kontsevich (J Am Math Soc 31(2):497–608, 2018). Our approach combines the scattering diagram techniques used in loc. cit. with the Donaldson–Thomas theory of quivers.
Publisher
Springer Science and Business Media LLC
Reference73 articles.
1. Allegretti, D.G.L., Kim, H.K.: A duality map for quantum cluster varieties from surfaces. Adv. Math. 306, 1164–1208 (2017)
2. Allegretti, D.G.L.: A duality map for the quantum symplectic double. arXiv:1605.01599
3. Allegretti, D.G.L.: Categorified canonical bases and framed BPS states. Selecta Math. (N.S.), 25(5):Paper No. 69, 50 (2019)
4. Beilinson, A., Bernstein, J., Deligne, P.: Faisceaux pervers. Astérisque 100, 5–171 (1982)
5. Beilinson, A.A.: Coherent sheaves on $${ P}^{n}$$ and problems in linear algebra. Funktsional. Anal. i Prilozhen. 12(3), 68–69 (1978)
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Cluster realisations of ıquantum$\imath {\rm quantum}$ groups of type AI;Proceedings of the London Mathematical Society;2024-09-12
2. Quivers and curves in higher dimension;Transactions of the American Mathematical Society;2024-09-03
3. A Quantization of Moduli Spaces of 3-Dimensional Gravity;Communications in Mathematical Physics;2024-05-28
4. Stable maps to Looijenga pairs;Geometry & Topology;2024-02-27
5. DILOGARITHM IDENTITIES IN CLUSTER SCATTERING DIAGRAMS;Nagoya Mathematical Journal;2023-12-21