Diophantine approximation as Cosmic Censor for Kerr–AdS black holes

Author:

Kehle Christoph

Abstract

AbstractThe purpose of this paper is to show an unexpected connection between Diophantine approximation and the behavior of waves on black hole interiors with negative cosmological constant $$\Lambda <0$$ Λ < 0 and explore the consequences of this for the Strong Cosmic Censorship conjecture in general relativity. We study linear scalar perturbations $$\psi $$ ψ of Kerr–AdS solving $$\Box _g\psi -\frac{2}{3}\Lambda \psi =0$$ g ψ - 2 3 Λ ψ = 0 with reflecting boundary conditions imposed at infinity. Understanding the behavior of $$\psi $$ ψ at the Cauchy horizon corresponds to a linear analog of the problem of Strong Cosmic Censorship. Our main result shows that if the dimensionless black hole parameters mass $${\mathfrak {m}} = M \sqrt{-\Lambda }$$ m = M - Λ and angular momentum $${\mathfrak {a}} = a \sqrt{-\Lambda }$$ a = a - Λ satisfy a certain non-Diophantine condition, then perturbations $$\psi $$ ψ arising from generic smooth initial data blow up $$|\psi |\rightarrow +\infty $$ | ψ | + at the Cauchy horizon. The proof crucially relies on a novel resonance phenomenon between stable trapping on the black hole exterior and the poles of the interior scattering operator that gives rise to a small divisors problem. Our result is in stark contrast to the result on Reissner–Nordström–AdS (Kehle in Commun Math Phys 376(1):145–200, 2020) as well as to previous work on the analogous problem for $$\Lambda \ge 0$$ Λ 0 —in both cases such linear scalar perturbations were shown to remain bounded. As a result of the non-Diophantine condition, the set of parameters $${\mathfrak {m}}, {\mathfrak {a}}$$ m , a for which we show blow-up forms a Baire-generic but Lebesgue-exceptional subset of all parameters below the Hawking–Reall bound. On the other hand, we conjecture that for a set of parameters $${\mathfrak {m}}, {\mathfrak {a}} $$ m , a which is Baire-exceptional but Lebesgue-generic, all linear scalar perturbations remain bounded at the Cauchy horizon $$|\psi |\le C$$ | ψ | C . This suggests that the validity of the $$C^0$$ C 0 -formulation of Strong Cosmic Censorship for $$\Lambda <0$$ Λ < 0 may change in a spectacular way according to the notion of genericity imposed.

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3