Author:
Karpukhin Mikhail,Stern Daniel
Abstract
AbstractWe prove the existence of nonconstant harmonic maps of optimal regularity from an arbitrary closed manifold $(M^{n},g)$
(
M
n
,
g
)
of dimension $n>2$
n
>
2
to any closed, non-aspherical manifold $N$
N
containing no stable minimal two-spheres. In particular, this gives the first general existence result for harmonic maps from higher-dimensional manifolds to a large class of positively curved targets. In the special case of the round spheres $N=\mathbb{S}^{k}$
N
=
S
k
, $k\geqslant 3$
k
⩾
3
, we obtain a distinguished family of nonconstant harmonic maps $M\to \mathbb{S}^{k}$
M
→
S
k
of index at most $k+1$
k
+
1
, with singular set of codimension at least 7 for $k$
k
sufficiently large. Furthermore, if $3\leqslant n\leqslant 5$
3
⩽
n
⩽
5
, we show that these smooth harmonic maps stabilize as $k$
k
becomes large, and correspond to the solutions of an eigenvalue optimization problem on $M$
M
, generalizing the conformal maximization of the first Laplace eigenvalue on surfaces.
Publisher
Springer Science and Business Media LLC
Reference56 articles.
1. Bethuel, F.: On the singular set of stationary harmonic maps. Manuscr. Math. 78, 417–443 (1993)
2. Chen, Y.M., Struwe, M.: Existence and partial regularity results for the heat flow for harmonic maps. Math. Z. 201(1), 83–103 (1989)
3. Colbois, B., El Soufi, A.: Extremal eigenvalues of the Laplacian in a conformal class of metrics: ‘the conformal spectrum’. Ann. Glob. Anal. Geom. 24(4), 337–349 (2003)
4. Da Lio, F., Gianocca, M., Rivière, T.: Morse index stability for critical points to conformally invariant Lagrangians. Preprint arXiv:2212.03124
5. Eells, J., Sampson, J.H.: Harmonic mappings of Riemannian manifolds. Am. J. Math. 86, 109–160 (1964)