Birational geometry of symplectic quotient singularities

Author:

Bellamy Gwyn,Craw Alastair

Abstract

AbstractFor a finite subgroup $$\Gamma \subset \mathrm {SL}(2,\mathbb {C})$$ Γ SL ( 2 , C ) and for $$n\ge 1$$ n 1 , we use variation of GIT quotient for Nakajima quiver varieties to study the birational geometry of the Hilbert scheme of n points on the minimal resolution S of the Kleinian singularity $$\mathbb {C}^2/\Gamma $$ C 2 / Γ . It is well known that $$X:={{\,\mathrm{{\mathrm {Hilb}}}\,}}^{[n]}(S)$$ X : = Hilb [ n ] ( S ) is a projective, crepant resolution of the symplectic singularity $$\mathbb {C}^{2n}/\Gamma _n$$ C 2 n / Γ n , where $$\Gamma _n=\Gamma \wr \mathfrak {S}_n$$ Γ n = Γ S n is the wreath product. We prove that every projective, crepant resolution of $$\mathbb {C}^{2n}/\Gamma _n$$ C 2 n / Γ n can be realised as the fine moduli space of $$\theta $$ θ -stable $$\Pi $$ Π -modules for a fixed dimension vector, where $$\Pi $$ Π is the framed preprojective algebra of $$\Gamma $$ Γ and $$\theta $$ θ is a choice of generic stability condition. Our approach uses the linearisation map from GIT to relate wall crossing in the space of $$\theta $$ θ -stability conditions to birational transformations of X over $$\mathbb {C}^{2n}/\Gamma _n$$ C 2 n / Γ n . As a corollary, we describe completely the ample and movable cones of X over $$\mathbb {C}^{2n}/\Gamma _n$$ C 2 n / Γ n , and show that the Mori chamber decomposition of the movable cone is determined by an extended Catalan hyperplane arrangement of the ADE root system associated to $$\Gamma $$ Γ by the McKay correspondence. In the appendix, we show that morphisms of quiver varieties induced by variation of GIT quotient are semismall, generalising a result of Nakajima in the case where the quiver variety is smooth.

Funder

University of Bath

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quiver varieties and framed sheaves on compactified Kleinian singularities;Journal of Algebra and Its Applications;2024-08-07

2. Crepant Resolutions of Stratified Varieties via Gluing;International Mathematics Research Notices;2024-07-17

3. All 81 crepant resolutions of a finite quotient singularity are hyperpolygon spaces;Journal of Algebraic Geometry;2024-04-01

4. Namikawa-Weyl groups of affinizations of smooth Nakajima quiver varieties;Representation Theory of the American Mathematical Society;2023-07-27

5. A new family of isolated symplectic singularities with trivial local fundamental group;Proceedings of the London Mathematical Society;2023-01-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3