Author:
Belov Yurii,Kulikov Aleksei,Lyubarskii Yurii
Abstract
AbstractWe study the frame properties of the Gabor systems $$\begin{aligned} {\mathfrak {G}}(g;\alpha ,\beta ):=\{e^{2\pi i \beta m x}g(x-\alpha n)\}_{m,n\in {\mathbb {Z}}}. \end{aligned}$$
G
(
g
;
α
,
β
)
:
=
{
e
2
π
i
β
m
x
g
(
x
-
α
n
)
}
m
,
n
∈
Z
.
In particular, we prove that for Herglotz windows g such systems always form a frame for $$L^2({\mathbb {R}})$$
L
2
(
R
)
if $$\alpha ,\beta >0$$
α
,
β
>
0
, $$\alpha \beta \le 1$$
α
β
≤
1
. For general rational windows $$g\in L^2({\mathbb {R}})$$
g
∈
L
2
(
R
)
we prove that $${\mathfrak {G}}(g;\alpha ,\beta )$$
G
(
g
;
α
,
β
)
is a frame for $$L^2({\mathbb {R}})$$
L
2
(
R
)
if $$0<\alpha ,\beta $$
0
<
α
,
β
, $$\alpha \beta <1$$
α
β
<
1
, $$\alpha \beta \not \in {\mathbb {Q}}$$
α
β
∉
Q
and $${\hat{g}}(\xi )\ne 0$$
g
^
(
ξ
)
≠
0
, $$\xi >0$$
ξ
>
0
, thus confirming Daubechies conjecture for this class of functions. We also discuss some related questions, in particular sampling in shift-invariant subspaces of $$L^2({\mathbb {R}})$$
L
2
(
R
)
.
Funder
NTNU Norwegian University of Science and Technology
Publisher
Springer Science and Business Media LLC
Reference27 articles.
1. Bittner, K., Chui, C.K.: Gabor frames with arbitrary windows. In: Approximation Theory, X (St. Louis, MO, 2001) Innovations Applied Mathematics, pp. 41–50. Vanderbilt University Press, Nashville, TN (2002)
2. Dai, X., Sun, Q.: The $$abc$$-problem for Gabor systems. Mem. Amer. Math. Soc. 244, 1152 (2016)
3. Daubechies, I.: The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inform. Theory 36(5), 961–1005 (1990)
4. He, X., Lau, K.: On the Weyl-Heisenberg frames, generated by simple functions. J. Funct. Anal. 261(4), 1010–1027 (2011)
5. Janssen, A.J.E.M.: Zak transforms with few zeros and the tie. In: Advances in Gabor Analysis, pp. 31–70, Appl. Numer. Harmon. Anal. Birkhäuser Boston (2003)
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献