Abstract
AbstractWe prove a sharp (up to $C_{\varepsilon }R^{\varepsilon }$
C
ε
R
ε
) $L^{7}$
L
7
square function estimate for the moment curve in $\mathbb{R}^{3}$
R
3
.
Publisher
Springer Science and Business Media LLC
Reference12 articles.
1. Guth, L., Wang, H., Zhang, R.: A sharp square function estimate for the cone in $\mathbb{R}^{3}$. Ann. Math. (2) 192(2), 551–581 (2020)
2. Bourgain, J., Demeter, C.: The proof of the $l^{2}$ decoupling conjecture. Ann. Math. (2) 182(1), 351–389 (2015)
3. Córdoba, A.: Geometric Fourier analysis. Ann. Inst. Fourier (Grenoble) 32(3), 215–226 (1982)
4. Guth, L., Maldague, D.: Small cap decoupling for the cone in $\mathbb{R}^{3}$ (2022)
5. Guth, L., Maldague, D., Wang, H.:. Improved decoupling for the parabola (2020)