The Impact of Resource Allocation on the Machine Learning Lifecycle

Author:

Duda Sebastian,Hofmann Peter,Urbach Nils,Völter Fabiane,Zwickel Amelie

Abstract

AbstractAn organization’s ability to develop Machine Learning (ML) applications depends on its available resource base. Without awareness and understanding of all relevant resources as well as their impact on the ML lifecycle, we risk inefficient allocations as well as missing monopolization tendencies. To counteract these risks, the study develops a framework that interweaves the relevant resources with the procedural and technical dependencies within the ML lifecycle. To rigorously develop and evaluate this framework the paper follows the Design Science Research paradigm and builds on a literature review and an interview study. In doing so, it bridges the gap between the software engineering and management perspective to advance the ML management discourse. The results extend the literature by introducing not yet discussed but relevant resources, describing six direct and indirect effects of resources on the ML lifecycle, and revealing the resources’ contextual properties. Furthermore, the framework is useful in practice to support organizational decision-making and contextualize monopolization tendencies.

Funder

Universität Bayreuth

Publisher

Springer Science and Business Media LLC

Subject

Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3