Docking of chromaffin granules—A necessary step in exocytosis?

Author:

Schäfer Theo1,Karli Urs O.1,Schweizer Felix E.1,Burger Max M.1

Affiliation:

1. Dept. of Biochemistry, Biocenter of the University, Klingelbergstr. 70, CH-4056, Basel

Abstract

Putative docking of secretory vesicles comprising recognition of and attachment to future fusion sites in the plasma membrane has been investigated in chromaffin cells of the bovine adrenal medulla and in rat phaeochromocytoma (PC 12) cells. Upon permeabilization with digitonin, secretion can be stimulated in both cell types by indreasing the free Ca2+-concentration to μM levels. Secretory activity can be elicited up to 1 hr after starting permeabilization and despite the loss of soluble cytoplasmic components indicating a stable attachment of granules to the plasma membrane awaiting the trigger for fusion. Docked granules can be observed in the electron microscope in permeabilized PC 12 cells which contain a large proportion of their granules aligned underneath the plasma membrane. The population of putatively docked granules in chromaffin cells cannot be as readily discerned due to the dispersal of granules throughout the cytoplasm. Further experiments comparing PC 12 and chromaffin cells suggest that active docking but not transport of granules can still be performed by permeabilized cells in the presence of Ca2+: a short (2 min) pulse of Ca2+ in PC 12 cells leads to the secretion of almost all releasable hormone over a 15 min observation period whereas, in chromaffin cells, with only a small proportion of granules docked, withdrawal of Ca2+ leads to an immediate halt in secretion. Transport of chromaffin granules from the Golgi to the plasma membrane docking sites seems to depend on a mechanism sensitive to permeabilization. This is shown by the difference in the amount of hormone released from the two permeabilized cell types, reflecting the contrast in the proportion of granules docked to the plasma membrane in PC 12 or chromaffin cells. Neither docking nor the docked state are influenced by cytochalasine B or colchicine. The permeabilized cell system is a valuable technique for the in vitro study of interaction between secretory vesicles and their target membrane.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3