Evidence of climate shift for temperature and precipitation extremes across Gansu Province in China

Author:

An Dong,Du YihengORCID,Berndtsson Ronny,Niu Zuirong,Zhang Linus,Yuan Feifei

Abstract

AbstractTemperature and precipitation extremes are the dominant causes of natural disasters. In this study, seven indices of extreme temperature and precipitation events in Gansu Province, China, were analysed for the period 1961–2017. An abrupt climate shift was recorded during 1980–1981. Thus, the study period was divided into a preshift (before the climate shift) period 1961–1980 and an aftshift (after the climate shift) period 1981–2017. Comparison of mean extreme indices for preshift and aftshift periods was performed for the purpose of exploring possible increasing/decreasing patterns. Generalized extreme value (GEV) distribution was applied spatially to fit the extreme indices with return periods up to 100 years for preshift/aftshift periods. Singular value decomposition (SVD) was adopted to investigate possible correlation between the extreme climate events and indices of large-scale atmospheric circulation. The results indicate that changes in mean and return levels between the preshift and aftshift periods vary significantly in time and space for different extreme indices. Increase in extreme temperature regarding magnitude and frequency for the aftshift period as compared with the preshift period suggests a change to a warmer and more extreme climate during recent years. Changes in precipitation extremes were different in southern and northern parts of Gansu. The precipitation extremes in the north have increased that can result in more serious floods and droughts in the future. SVD analyses revealed a complex pattern of correlation between climate extremes and indices of large-scale atmospheric circulation. Strengthening of westerlies and weakening of the south summer monsoon contribute to the complex changing patterns of precipitation extremes. Results in this study will contribute to disaster risk prevention and better water management in this area.

Funder

Chinese national key research project

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3