Evaluation of multivariate linear regression for reference evapotranspiration modeling in different climates of Iran

Author:

Sharafi Saeed,Ghaleni Mehdi Mohammadi

Abstract

AbstractThe study aimed to evaluate the accuracy of empirical equations (Hargreaves-Samani; HS, Irmak; IR and Dalton; DT) and multivariate linear regression models (MLR1–6) for estimating reference evapotranspiration (ETRef) in different climates of Iran based on the Köppen method including arid desert (Bw), semiarid (Bs), humid with mild winters (C), and humid with severe winters (D). For this purpose, climatic data of 33 meteorological stations during 30 statistical years 1990–2019 were used with a monthly time step. Based on various meteorological data (minimum and maximum temperature, relative humidity, wind speed, solar radiation, extraterrestrial radiation, and vapor pressure deficit), in addition to 6 multivariate linear regression models and three empirical equations were used as MLR1, MLR2, and HS (temperature-based), MLR3 and IR (radiation-based), MLR4, MLR5 and DT (mass transfer-based), and MLR6 (combination-based) were also used to estimate the reference evapotranspiration. The results of these models were compared using the root mean square error (RMSE), mean absolute error (MAE), scatter index (SI), determination coefficient (R2), and Nash-Sutcliffe efficiency (NSE) statistical criteria with the evapotranspiration results of the FAO56 Penman-Monteith reference as target data. All MLR models gave better results than empirical equations. The results showed that the simplest regression model (MLR1) based on the minimum and maximum temperature data was more accurate than the empirical equations. The lowest and highest accuracy related to the MLR6 model and HS empirical equation with RMSE was 10.8–15.1 mm month−1 and 22–28.3 mm month−1, respectively. Also, among all the evaluated equations, radiation-based models such as IR in Bw and Bs climates with MAE = 8.01–11.2 mm month−1 had higher accuracy than C and D climates with MAE = 13.44–14.48 mm month−1. In general, the results showed that the ability of regression models was excellent in all climates from Bw to D based on SI < 0.2.

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

Reference45 articles.

1. Abdullah SS, Malek MA, Abdullah NS, Kisi O, Yap KS (2015) Extreme learning machines: a new approach for prediction of reference evapotranspiration. Journal of Hydrology 527:184–195

2. Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration-guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56 Fao. Rome 300:D05109

3. Chen Z, Zhu Z, Jiang H, Sun S (2020) Estimating daily reference evapotranspiration based on limited meteorological data using deep learning and classical machine learning methods. Journal of Hydrology 591:125286

4. Dalton J (1802) Experimental essays on the constitution of mixed gases Manchester Literary and Philosophical Society Memo 5:535–602

5. dos Santos Farias DB, Althoff D, Rodrigues LN, Filgueiras R (2020) Performance evaluation of numerical and machine learning methods in estimating reference evapotranspiration in a Brazilian agricultural frontier Theoretical and Applied Climatology:1–12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3