Evaluation of precipitation reanalysis products for regional hydrological modelling in the Yellow River Basin

Author:

Jiang Cong,Parteli Eric J. R.,Xia Qian,Shao Yaping

Abstract

AbstractThis study evaluates six precipitation reanalysis products for the Yellow River Basin using gridded rain gauge data, runoff data and the Atmospheric and Hydrological Modelling System (AHMS) simulations. The assessment begins with comparing the annual, seasonal, monthly and daily precipitation of the products with gridded rain gauge data. The AHMS is then run with each of the precipitation reanalysis products under two scenarios: one with calibrated rainfall-runoff and the other without. The simulated streamflow is then compared with the corresponding observations. It is found that non-gauge-corrected products tend to overestimate precipitation, especially for mountainous regions. Amongst the six products evaluated, the China Meteorological Forcing Dataset (CMFD) and WATCH Forcing Data methodology applied to ERA5 (WFDE5/CRU+GPCC) are identified as the most accurate products, supported by both statistical and hydrological comparisons. This consistency in statistical and hydrological comparisons suggests the potential applicability of the hydrological comparison method using the AHMS in ungagged catchments, even in the presence of significant anthropogenic impacts. Furthermore, the calibration of the hydrological model significantly impacts the model’s response to precipitation, effectively compensating for deficiencies in rainfall data within certain limits. This study highlights accurate representation of extreme rainfall events in precipitation products has a significant impact on calibrated soil parameters and is particularly important in hydrological modelling. It enhances our understanding of the reliability of hydrological simulations and provides valuable insights for the assessment of precipitation reanalysis products in large arid and semiarid basins affected by human activities.

Funder

Universität zu Köln

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

Reference51 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3